中3 1学期のまとめ

この本の使い方

この本は、学習ページ(各4P)と仕上げページ(各1P)、巻末付録で構成されています。

1 学習する単元の重要事項を確かめます。

№ 例題 学習する内容を例題の形で示しています。

覚える内容や問題を解くコツをまとめています。

♣ % M 類 の解き方をまとめています。☆ ChECK ☆ ChE

1 に対応する問題に取り組みます。

Q 練習しょう **℃** 例題 と同じ番号の問題を解きましょう。 ☆はやや発展的な問題です。

仕上げページ

単元の学習を終えたら、仕上げページに取り組みます。 3

巻末付録

つなげよう! 入試にチャレンジ

全国の公立高校の入試問題のうち, 毎年必ず出題される問題を中心に収録しています。 各単元の学習を終えたあとに取り組んでみましょう。

CONTENTS

式の展開 2~5	半万根の計算 14~17
1-1 式の展開	4-1 平方根の計算
1-2 乗法の公式を使った式の展開	4-2 やや複雑な平方根の計算
因数分解 6~9	2次方程式の解法 18~21
2-1 因数分解	5-1 平方根や解の公式を使って解く
2-2 いろいろな因数分解	5-2 因数分解を使って解く
平方根 10~13	2次方程式の利用 22~25
3-1 平方根	6-1 2次方程式の解と定数/文章題
3-2 平方根の表し方	6-2 2次方程式と図形
仕上げページ	26~31
つなげよう! 入試にチャレンジ	32~37

zntcheck!

☆ 分配法則 a(b+c)=ab+ac

 $(a+b)\times c=ac+bc$

式の展開

❤ 例題

次の計算をしましょう。

- (1) (1) $(x + 5y) \times 3x$
 - $(2)(1) (4x^2 + 12x) \div 2x$
- ② -3a(2a-4b)
- ② $(9a^2 6ab) \div \frac{3}{4}a$

単項式×多項式の計算… 分配法則を使って計算する。 多項式÷単項式の計算… 乗法(かけ算)に直して計算する。

$$(1) (x + 5y) \times 3x$$

$$=x \times \boxed{ +5y \times \boxed{ }}$$

$$2) -3a(2a-4b)$$

$$= -3a \times \boxed{ -3a \times (\boxed{ })}$$

(2)①
$$(4x^2 + 12x) \div 2x$$

= $(4x^2 + 12x) \times$

$$=4x^2\times \boxed{+12x\times}$$

②
$$(9a^2 - 6ab) \div \frac{3}{4}a$$

$$= (9a^2 - 6ab) \times$$

$$=9a^2\times$$
 $\left|-6ab\times\right|$

& 例題

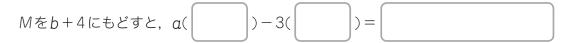
次の式を展開しましょう。

(1) (a-3)(b+4)

(2) (2x - y)(3x + y)

展開 … 単項式や多項式の積の形を, ()をはずして単項式の和の形になおすこと。 多項式の展開 … 一方の式を 1 つの文字で表し、分配法則を使って計算する。

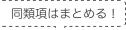
(1) (a-3)(b+4) 0b+4 EM > 2 EX > 4 EX >



(2) (2x-y)(3x+y) $03x+y \in M \in S < C$,

$$(2x-y)(3x+y) = (2x-y) \times M = \left[\qquad \right] \times M - \left[\qquad \right] \times M$$

M = 3x + y C = 5



◆展開の式◆ (a+b)(c+d) = ac+ad+bc+bd

)

単項式×多項式の計算,多項式÷単項式の計算,式の展開のしかたを学習します。

これらの計算はすべて「分配法則を使って()をはずす」計算になっていることを確かめましょう。

Q1 練習しよう

- □(1) 次の計算をしましょう。
 - \Box (a + 2b) × 5a

 \Box 2 4y(5x-y)

 $\square 3 \quad (3a+b+1)\times (-2b)$

 $\Box \oplus -x(3x-2y+7)$

) (

- □(2) 次の計算をしましょう。
 - $\Box \bigcirc (10x^2 25x) \div 5x$

 \Box ② $(28a^2 + 49ab) \div \frac{7}{4}a$

 $\Box 4 (4a^2b - 14ab + 6ab^2) \div \frac{2}{3}b$

- ●次の式を展開しましょう。
 - \Box (1) (x+5)(y+1)

 \Box (2) (a+2)(3b-4)

 $\Box(3) \quad (x+y)(2x-3y)$

) (()

 $\Box (5) \quad (x-2)(3x+y+6)$

() \Box (6) (3a+2b+1)(2a-1)

(

乗法の公式を使った式の展開

❤ 例題

次の式を展開しましょう。

3

(1)
$$(x+2)(x+3)$$

(2) $(x+4)^2$

(3) $(x-4)^2$

(4) (x+5)(x-5)

乗法の公式 (1) $(x+a)(x+b) = x^2 + (a+b)x + ab$

(2)
$$(a+b)^2 = a^2 + 2ab + b^2$$

(3)
$$(a-b)^2 = a^2 - 2ab + b^2$$

(4)
$$(a + b)(a - b) = a^2 - b^2$$

(1) $(x+2)(x+3) = x^2 + ($

)x +

空所をうめよう

(2) $(x+4)^2 = x^2 + 2 \times x \times$

 $^{2} =$

(3) $(x-4)^2 = x^2 - 2 \times x \times$

 $^{2} =$

(4) $(x+5)(x-5) = x^2 -$

& 例題

(1) 次の式を展開しましょう。

(x+y+6)(x+y-6)

① $(3x+1)^2$

(2) (x-1)(x+2)+(x-2)(x+1) を計算しましょう。

- (1) 単項式や多項式を1つの文字で表すと、乗法の公式が利用できる。
- (2) 乗法の公式を使って式を展開してから、同類項をまとめて計算する。

(1)① $(3x+1)^2$ $\sigma 3x \in A \succeq h \iff (3x+1)^2 = (A+1)^2 =$

 $A \approx 3x$ $(1)^2 + 2 \times 10^2$

(x+y+6)(x+y-6) = (M+6)(M-6) =

(2) (x-1)(x+2) + (x-2)(x+1) =

)

)

)

)

式の展開の中でよく用いられる形のものは、「乗法の公式(乗法公式)」または「展開の公式」として まとめられます。乗法の公式を使って式を展開する練習をしましょう。

練習しよう

次の	ナム	异門	#	l L	$\stackrel{\sim}{}$
マス ひし	ILICA	☆ 开	しょ	しょ	ノっ

$$\Box$$
(1) $(x+5)(x+2)$

$$\Box$$
(2) $(x-6)(x-7)$

$$\Box$$
(3) $(a+3)^2$

$$\Box (4) \quad \left(x + \frac{1}{2}\right)^2$$

$$\Box$$
(5) $(x-10)^2$

$$\Box (6) \quad \left(x - \frac{1}{4}\right)^2 \tag{}$$

$$\Box$$
(7) $(x+8)(x-8)$

()
$$\Box(8) (4+a)(4-a)$$

)

練習しよう

$\square(1)$	次の式を	に開用る	. = 1	
1 1(1 /	シバ ロカエいろ	イルコエロ	141	/ 1) -

$$\Box$$
 (2x - 1)²

$$\Box$$
② $(5a-1)(5a+3)$

$$\Box$$
3 $(a+b+3)(a+b-3)$

$$\Box$$
(4) $(x+y+1)(x+y+4)$

$$\Box$$
(1) $(x+7)(x-4)+(x+3)(x-1)$

$$\Box \textcircled{1} (x+7)(x-4) + (x+3)(x-1) \qquad \Box \textcircled{2} (a+6)^2 - (a+8)(a+4)$$

$$\Box$$
 3 $x(x-5)-(x-2)(x+7)$

$$\Box \oplus (2x - y)(2x + y) + x(1 - 2y)$$

(

因数分解

ዺ 例題

次の式を因数分解しましょう。

5

(1)
$$x^2 + 4xy$$

(2) 3ab - 12ac

因数… 多項式を,単項式や多項式の積の形で表したとき,かけあわされている1つ1つの式。 因数分解… 多項式を、いくつかの単項式や多項式の積の形で表すこと。

(1)
$$x^2 + 4xy$$

空所をうめよう

$$= \underline{x} \times x + \underline{x} \times 4y$$

(2) 3ab - 12ac

$$= 3 \times a \times b - 12 \times a \times c$$

(* 3ab - 12ac = $a(\underline{3}b - \underline{12}c)$)

2 zntcheck!

☆ 分配法則の逆 ab+ac=a(b+c)共通な因数は、すべて

℃ 例題

6

次の式を因数分解しましょう。

- (1) $x^2 + 5x + 6$
- (3) $x^2 6x + 9$

- (2) $x^2 + 6x + 9$
- (4) $x^2 81$

因数分解の公式

- (1) $x^2 + (a+b)x + ab = (x+a)(x+b)$
- (乗法の公式の逆) (2) $a^2 + 2ab + b^2 = (a + b)^2$
 - (3) $a^2 2ab + b^2 = (a b)^2$
 - (4) $a^2 b^2 = (a + b)(a b)$

空所をうめよう

(1)
$$x^2 + \underline{5} x + \underline{6}$$

	和	積が6		
×	7	6	٢	1
×	-7	-6	۲	-1
	5	3	٢	2
×	- 5	-3	<u>ـــ</u>	-2

$$(2) \quad x^2 + 6 \quad x + 9$$

$$+ 6 \quad x + 9$$

$$+ 6 \quad x + 9$$

$$= x^2 + 2 \times x \times \boxed{ + } \boxed{ }^2$$

$$= ()^2$$

$$(2) \quad m^2 \quad 6 \quad m \quad 1 \quad 0$$

(3)
$$x^{2} = 6x + 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+ 9$$

$$+$$

$$=($$
 $)^{2}$

$$x^2 + 5x + 6$$

 z_{n+c} check! $x^2+Ox+\Delta$ の因数分解

☆ ○と△の関係に注目!

○の半分の2乗が△⇒公式(2)か(3) ある2数の和が○, 積が△ ⇒ 公式(1)

(4)
$$x^2 - 81$$

)

)

)

)

単項式の和の形を、多項式の積の形になおすことを「因数分解」といいます。

①共通な因数をくくり出す ②乗法の公式を逆に使う の2通りの方法をマスターしましょう。

●次の式を因数分解し	まし	ょう。
------------	----	-----

$$\Box$$
(1) $ab + ac$

$$\Box$$
(2) $ax + bx + cx$

$$\Box (3) \quad 6x^2 + 18x$$

$$\Box$$
(4) $15a^2b + 10ab^2$

()

Q6 練習しよう

●次の式を因数分解しましょう。

$$\Box(1) \quad x^2 + 7x + 6$$

$$\Box$$
(2) $x^2 + 4x - 21$

$$\Box$$
(3) $a^2 - a - 30$

$$\Box$$
(4) $a^2 - 13a + 36$

$$\Box(5) \quad x^2 + 2x + 1$$

$$\Box$$
(6) $a^2 + 14a + 49$

$$\Box (7) \quad \alpha^2 - 4\alpha + 4$$

)
$$(8) \quad x^2 - x + \frac{1}{4}$$

$$\Box$$
(9) $x^2 - 25$

(

)
$$(10) 100 - x^2$$

治HINT (8)
$$x$$
の係数-1と $\frac{1}{4}$ の関係に注目しよう。 (10) $100=10^2$ と考えよう。

いろいろな因数分解

🎗 例題

(1) 次の式を因数分解しましょう。

①
$$3x^2 + 15x + 18$$

- (2) 次の式を因数分解しましょう。
 - ① $25x^2 + 10x + 1$

② $x^2y - 6xy + 9y$

 $(x+y)^2-(x+y)-2$

- (1) 共通な因数をくくり出してみると、因数分解の公式が利用できる。
- (2) 単項式や多項式を1つの文字で表すと、因数分解の公式が利用できる。

(1) ①
$$3x^2 + 15x + 18$$

②
$$x^2y - 6xy + 9y$$

(2) (2)

$$25x^2 + 10x + 1 = (5x)^2 + 2 \times 5x \times 1 + 1^2$$

$$= A^2 + 2 \times A \times 1 + 1^2 =$$

 $A \approx 5x$ にもどすと,

$$(x+y)^2 - (x+y) - 2 = M^2 - M - 2 =$$

Mex+y にもどすと,

℃ 例題

8

連続する2つの奇数の積に1を加えると、偶数の2乗になります。 このことを、nを整数として、nを用いた式を使って証明しましょう。

問題に出てくる整数を文字式で表し、式の展開や因数分解を利用する。

(証明) nを整数とすると、連続する2つの奇数は、2n-1、2n+1 と表せる。

これらの積に1を加えると,

$$(2n-1)($$
 $)+1=$ $+1=$ $=($ $)^2$

は偶数だから、連続する2つの奇数の積に1を加えると、偶数の2乗になる。

共通な因数をくくり出してから公式を利用したり、式を文字におきかえたりして、くふうして因数分解する 方法を学習します。また、展開や因数分解を利用して、整数の性質などを証明してみましょう。

Q7 練習しよう

- ●次の式を因数分解しましょう。
 - \Box (1) $6x^2 18x 24$

 \Box (2) $5x^2 - 80$

$$\Box (3) \quad xy^2 + 12xy + 36x$$

)
$$\Box$$
 () \Box (4) $2a^2b - 20ab + 50b$

$$\Box$$
(5) $81a^2 - 49$

)
$$(6) 9x^2 + 6x + 1$$

(
$$\Box$$
 (7) $16x^2 - 24x + 9$

)
$$(8) 4a^2 - 20ab + 25b^2$$

$$\Box(9) \quad (x+y)^2 - 49$$

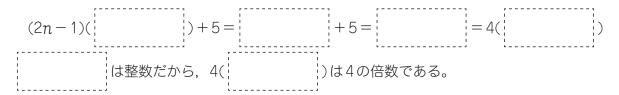
$$2 \square (10) \quad (x+6)^2 + 3(x+6) - 54$$

() () ()) x+6をMとおいて考えよう。Mをx+6にもどした後の計算に注意しよう。

○8 練習しよう・

- ●連続する2つの奇数の積に5を加えると、4の倍数になります。このことを、nを整数として、次のように証明しました。 にあてはまる式を書きましょう。
 - \square (証明) nを整数とすると、連続する2つの奇数は、2n-1、2n+1 と表せる。

これらの積に5を加えると、



よって、連続する2つの奇数の積に5を加えると、4の倍数になる。